
 

  
Abstract—We propose a novel scheme, called cluster 

cooperative (CC) for caching in mobile ad hoc networks where 
network topology is partitioned into non-overlapping clusters. In 
each cluster a “super” node called cache state node (CSN) is 
chosen to maintain the cluster cache state (CCS) information for 
nodes within its cluster domain. For a local cache miss, each 
client checks the data with its home CSN before forwarding the 
request towards server. Simulation experiments show that the 
CC caching mechanism achieves significant improvements in 
average query latency and reduces the cache management 
overheads in comparison with other caching strategies. 
 

Index Terms—Ad hoc networks, cooperative caching, 
admission control, replacement, consistency, cluster. 

I. INTRODUCTION 
The ultimate goal of mobile ad hoc network (MANET) is to 

provide efficient information/data access to mobile nodes. 
Caching is one of the most attractive techniques that improves 
data retrieval performance in wireless mobile environment [1], 
[5]. With caching, the data access delay is reduced since data 
access requests can be served from the local cache, thereby 
obviating the need for data transmission over the scarce 
wireless links. However, caching techniques used in one-hop 
mobile environment may not be applicable to multi-hop ad 
hoc environment since the data or request may need to go 
through multiple hops. Variable data size, frequent data 
updates, limited client resources, insufficient wireless 
bandwidth and clients’ mobility make cache management a 
challenging task in mobile ad hoc networks. As mobile nodes 
in ad hoc networks may have similar tasks and share common 
interest, cooperative caching, which allows the sharing and 
coordination of cached data among multiple nodes, can be 
used to reduce the bandwidth and power consumption. 

To date there are some works in literature on cooperative 
caching in ad hoc networks, such as consistency [2], [3] and 
placement [4]. To the best of our knowledge, none of previous 
works has exploited clustering as caching mechanism in 
MANETs.  

In this paper, we investigate the data retrieval challenge of 
mobile ad hoc networks and propose a novel scheme, called 
cluster cooperative (CC) for caching. The goal of CC is to 
reduce the cache discovery overhead and provide better 
 

 

cooperative caching performance. CC partitions the whole 
MANET into equal size clusters based on the geographical 
network proximity (see Fig. 1). To enhance the system 
performance, within a cluster, individual caches interact with 
each other such that combined result is a larger cumulative 
cache. In each cluster, CC dynamically chooses a “super” 
node as cache state node (CSN), to maintain the cluster cache 
state (CCS) information of different nodes within its cluster 
domain. The CCS for a client is the list of cached items along 
with their time-to-live (TTL) field. Simulation experiments are 
performed to evaluate the proposed CC caching scheme and 
compare it with existing strategies in the ad hoc networks. 

The rest of the paper is organized as follows. Clustering 
strategy employed in CC is presented in Section II. Section III 
describes the proposed CC caching scheme for data retrieval. 
Section IV is devoted to performance evaluation. Section V 
concludes the paper. 

II. CLUSTER HANDLING 
Our clustering algorithm divides the network topology into 

predefined equal sized geographical grids called clusters1. 
Grid size captures the maximum distance between two nodes 
inside a cluster. Size is selected such that, each node is at one-
hop distance from every other node inside a cluster. Network 
area is assumed to be virtually extended such that boundary 
clusters also have same size as other clusters. Beginning with 
the left lower cluster, the clusters are named as 1, 2, ..., in a 
zigzag diagonal-wise fashion. In each cluster area a “super” 
node is selected to act as CSN, which is responsible for 
maintaining the cluster cache state (CCS) information of 
different nodes within its cluster domain. CCS for a node is 
the list of data items along with their TTL stored in its cache. 
When a node caches/replaces a data item, its CCS is updated 
at the CSN. 

It may be noted that CSN is quite different from 
conventional “clusterhead” that is used to forward requests for 
a group of nodes. In each cluster of such a clusterhead 
networked system, all the requests from/to a client are 
forwarded by the clusterhead, which tends to make it a 
 

1 The problem of finding an optimal clustering is out of the scope of this 
paper. For the sake of simplicity, in this paper we assume that clusterization 
phase gives a partition of the network into grids. However, any clustering 
algorithm can be used as our CC caching scheme is compatible with any non-
overlapping clustering strategy. 

An Efficient Caching Strategy in Mobile Ad 
Hoc Networks Based on Clusters 

Narottam Chand*, R. C. Joshi, and Manoj Misra  
Department of Electronics and Computer Engineering 

Indian Institute of Technology, Roorkee 247 667, India 
*Email: nchand@ieee.org

home
Text Box
1-4244-0340-5/06/$20.00 ©2006 IEEE



 

bottleneck and/or a point of failure when the system has high 
network density. Unlike this, CSN works only as CCS holder 
to save the information about the cached items by different 
clients belonging to the cluster, and provides additional 
service during cache discovery, admission control and 
replacement. Compared to clusterhead, CSN deals with much 
less workload and does not have to as powerful as a 
clusterhead. In the proposed clustering method, grid side g is a 
key factor to the clustering. If g is set to 2r , all clients in a 
cluster can connect to one another in one-hop communication. 
Where r is transmission range of a client. 

In CC, a typical cluster consists of a CSN and a number of 
clients, and a client only belongs to one cluster. Since a CSN 
is expected to handle additional load in the system, it must be 
relatively stable and capable to support this responsibility. In 
order to ascertain such qualification of a node, we assign to 
each node a candidacy factor to be CSN, which is function of 
node staying period in the cluster and available battery power. 
A node with the highest candidacy factor is elected as CSN. 

III. CLUSTER COOPERATIVE (CC) CACHING 
The design rationale of CC is that, for a mobile client, all 

other mobile clients within its cluster domain form a 
cooperative cache system for the client since local caches of 
the clients virtually form a cumulative cache. In CC, when a 
client suffers from a cache miss (called local cache miss), the 
client will look up the required data item from the cluster 
members by sending a request to the CSN. Only when the 
client cannot find the data item in the cluster members’ caches 
(called cluster cache miss), it will request the item from the 
client that lies on the routing path towards server. If a cluster 
along the path to the server has the requested data (called 
remote cache hit), then it can serve the request without 
forwarding it further towards the server. Otherwise, the 
request will be satisfied by the server. For each request, one of 
the following four cases holds: 

Case 1: Local hit. When copy of the requested data item is 
stored inside the hard disk of the requester. The data item is 
retrieved to serve the query and no cooperation is necessary. 

Case 2: Cluster hit. When the requested data item is stored 
by a client within the cluster of the requester. The requester 
sends a request to the CSN and the CSN returns the address of 
the client that has cached the data item. 

Case 3: Remote hit. When the data is found with a client 
belonging to a cluster (other than home cluster of the 
requester) along the routing path to the data source. 

Case 4: Global hit. Data item is retrieved from the server. 
Based on the above idea, we propose a cache discovery 

algorithm to determine the data access path to a node having 
the requested cached data or to the data source. Assume that 
MHi denotes mobile node/client i. In Fig. 1, let us assume MHi 
sends a request for a data item dx and MHk is located along the 
path through which the request travels to the data source MHs, 
where k∈{a, c, d}. The discovery algorithm is described as 
follows: 

When MHi needs dx, it first checks its own cache. If the 
data item is not available in its local cache, it sends a lookup 
packet to the CSN MHj in its cluster. Upon receiving the 
lookup message, the CSN searches in the CCS for the 
requested data item. If the item is found, the CSN replies with 
an ack packet containing id of the client who has cached the 
item. MHi sends a request packet to the client whose id is 
returned by MHj and the client responds with reply packet that 
contains the requested data item. If no client is caching the 
item, the ack packet returned to the requester MHi contains 
Null address and the MHi sends a request packet to next hop 
node MHa. 

When MHk receives a request packet, it sends a lookup 
packet to its CSN if it does not have dx in its local cache. 
When MHk receives an ack packet, it sends request packet to 
the client within cluster or to next hop node based on the 
address returned in ack packet as described in step 1 above. 

When a node/MHs receives a request packet, it sends the 
reply packet to the requester. 

The reply packet containing item id dx, actual data Dx and 
TTLx, is forwarded hop-by-hop along the routing path until it 
reaches the original requester. Once a node receives the 
requested data, it triggers the cache admission control 
procedure to determine whether it should cache the data item. 

  

 MHi

 MHs

 MHd

 MHc MHa

 MHj

  request   lookup

2
r  CSN

Node

 
 

Fig. 1. Request packet from client MHi is forwarded to the data source MHs. 
In CC, the cache admission control allows a client to cache 

a data item based on the location of data source or other client 
that has the requested data. If the origin of the data resides in 
the same cluster of the requesting client, then the item is not 
cached, because it is unnecessary to replicate data item in the 
same cluster since cached data can be used by closely located 
hosts. In general, same data items are cached in different 
clusters without replication. Fig. 2 shows the behavior of CC 



 

caching strategy for a client request. 
The CC caching uses a simple weak consistency model 

based on time-to-live (TTL), in which a client considers a 
cached copy up-to-date if its TTL has not expired. The client 
removes the cached data when the TTL expires. A client 
refreshes a cached data item and its TTL if a fresh copy of the 
same data passes by. 

 

 
 

Fig. 2.  Service of a client request by CC caching strategy. 
 

TABLE I 
 SIMULATION PARAMETERS 

Parameter Default 
Value 

Range 

Database size (N) 1000 items  
smin 1 KB  
smax 10 KB  
Number of clients (M) 70 50~100 
Client cache size (C) 800 KB 200~1400 KB 
Client speed (vmin~vmax) 2 m/s 2~20 m/s 
Bandwidth (b) 2 Mbps  
TTL 5000 sec 200~10000 sec 
Pause time 300 sec  
Mean query generate 
time (Tq) 

5 sec 2~100 sec 

Transmission range (r) 250 m 25~250 m 
Skewness parameter (θ) 0.8 0~1 

IV. SIMULATION RESULTS 
The time interval between two consecutive queries 

generated from each client follows an exponential distribution 
with mean Tq. Each client generates accesses to the data items 
following Zipf distribution with a skewness parameter θ. 
There are N data items at the server. Data item sizes vary from 
smin to smax such that size si of item di is, 

⎣ ⎦)1ss().(randomss minmaxmini +−+= , i = 1, 2,... N, 
where random() is a random function uniformly distributed 
between 0 and 1. The simulation parameters are listed in Table 
I.  

For performance comparison with CC, two other schemes 
non-cooperative (NC) caching and CacheData [2], [3] are also 
implemented. In NC received data are cached only at query 
node and locally missed data items are always fetched from 
the origin server. In our experiments, the same data access 
pattern and mobility model are applied to all the three 
schemes. All the schemes use LRU algorithm for cache 
replacement. 

A. Effects of cache size 
Fig. 3 and Fig. 4 show the effects of cache size on average 

query latency and message overhead by varying the cache size 
from 200 KB to 1400 KB. From Fig. 3, we can see that the 
CC scheme performs much better than NC scheme. Because 
of the high byte hit ratio due to cluster cooperation, the 
proposed scheme also performs much better than CacheData. 
When the cache size is small, more required data could be 
found in local+cluster cache for CC as compared to 
CacheData which utilizes only the local cache, thus alleviating 
the need for remote and global cache access. Because the hop 
count of cluster data hit is one and is less than the average hop 
count of remote data hit, CC scheme achieves lower average 
query latency. As the cache size is large enough, the nodes 
can access most of the required data items from local and 
cluster cache, so reducing the query latency. It is worth noting 
that CC reaches its best performance when the cache size is 
800 KB. This demonstrates its low cache space requirement.  

Fig. 4 shows that CC performs much better than NC and 
CacheData in terms of message overhead. The reason is that 
due to cache cooperation within a cluster CC gets data from 
nearby node/cluster instead of far away data source. 
Therefore, the data requests and replies need to travel smaller 
number of hops and mobile nodes need to process lower 
number of messages. As the cache size grows, the byte hit 
ratio of CC increases and its message overhead decreases. 

B. Effects of mean query generate time 
Fig. 5 shows the average query latency as a function of the 

mean generate time Tq. The CC scheme performs better than 
NC and CacheData schemes at all values of Tq. At small value 
of Tq, the query generate rate is high and system workload is 
more. This results in high value of average query latency. 
When Tq increases, fewer queries are generated and average 
query latency drops. If Tq keeps increasing, the average query 
latency drops slowly or even increases slightly due to decrease 
in cache byte hit ratio. Under extreme high Tq, most of the 
queries are served by the remote data server and the difference 
between different schemes is not very large. Fig. 6 shows that 
NC has worst message overhead among all the schemes. 



 

Cache size (KB)

200 400 600 800 1000 1200 1400

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y 
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35
NC scheme
CacheData scheme
CC scheme

 
Fig. 3.  Effects of cache size on average query latency. 

Cache size (KB)

200 400 600 800 1000 1200 1400

N
um

be
r o

f m
es

sa
ge

s

6

7

8

9

10

11

12

13
NC scheme
CacheData scheme
CC scheme

 
Fig. 4. Effects of cache size on message overhead. 

C. Effects of mobility 
Fig. 7 and Fig. 8 show the comparison of caching strategies, 

where each node is moving with a speed uniformly distributed 
between 0 and a given value along x-axis. We vary the 
maximum speed of nodes from 2, 4, 8, 12, 16, to 20 m/sec.  

From Fig. 7, we see that performance of all the caching 
strategies degrades with increasing mobility. This is due to 
overheads caused by mobility induced route failures and route 
re-computations. If mobility increases, the frequency of nodes 
with different data affinity leaving/joining a cluster increases 
thus degrading the CC caching performance in terms of 
average query latency.  

Fig. 8 shows that the message overhead increases with 
increasing mobility. In CC, the number of messages due to 
CSN role change/election and new registration of cache states 
with CSN increases with the node mobility. Experiments show 
that the overall performance degrades with higher mobility. 

Mean query generate time (sec)

2 5 10 20 50 100

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y 
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35
NC scheme
CacheData scheme
CC scheme

 
Fig. 5.  Effects of query generate time on average query latency. 

Mean query generate time (sec)

2 5 10 20 50 100

N
um

be
r o

f m
es

sa
ge

s

4

6

8

10

12

14
NC scheme
CacheData scheme
CC scheme

 
Fig. 6. Effects of query generate time on message overhead. 

Mobility speed (m/sec)

2 4 8 12 16 20

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y 
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme
CacheData scheme
CC scheme

 
Fig. 7.  Effects of node mobility on average query latency. 



 

Mobility speed (m/sec)

2 4 8 12 16 20

N
um

be
r o

f m
es

sa
ge

s

6

8

10

12

14

16

18

20
NC scheme
CacheData scheme
CC scheme

 
Fig. 6. Effects of node mobility on message overhead. 

V. CONCLUSIONS 
This paper exploits clustering for efficient data caching in 

ad hoc networks. The proposed CC caching scheme reduces 
the message overheads and enhances the data accessibility as 
compared to other strategies. We anticipate that our work will 
stimulate further research on cooperative cache based data 
access by considering various issues such as cooperative 
cache replacement, strong cache consistency, prefetching, etc. 

REFERENCES 
[1] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for 

Mobile Environments,” IEEE Transactions on Knowledge and Data 
Engineering, Vol. 15, No. 5, pp. 1251-1265, 2003. 

[2] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc 
Networks,” IEEE INFOCOM, pp. 2537-2547, March 2004. 

[3] G. Cao, L. Yin and C. Das, “Cooperative Cache Based Data Access 
Framework for Ad Hoc Networks,” IEEE Computer, pp. 32-39, 
February 2004. 

[4] Pavan Nuggehalli, Vikram Srinivasan and C.-F. Chiasserini, “Energy-
Efficient Caching Strategies in Ad Hoc Wireless Networks,” MobiHoc, 
pp. 25-34, 2003. 

[5] N. Chand, R.C. Joshi and Manoj Misra, “Energy Efficient Cache 
Invalidation in a Mobile Environment,” International Journal of Digital 
Information Management (JDIM) special issue on Distributed Data 
Management, Vol. 3, No. 2, pp. 119-125, June 2005. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


